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I. INTRODUCTION AND BACKGROUND 
 

  Radar and microwave radiometer measurements from low-
earth orbit provide a means to characterize rainfall over much 
of the globe.  In the case of the TRMM Precipitation Radar, 
monthly accumulations of data in 50 × 50 and 0.50 × 0.50 
degree boxes serve as the basis for calculating histograms and 
first-order statistics of rain rate and reflectivity factor at 
several heights.  Apart from calculations of diurnal variations 
of rainfall and important studies on the Madden-Julian 
oscillation and ENSO, spatial and temporal correlations of 
rainfall at smaller space-time scales have received less 
attention.  Nevertheless, these second-order statistics are 
important for a number of studies including algorithm testing 
and development, partial-beam filling studies, satellite 
sampling studies, and fade statistics along satellite 
communication links.  Perhaps most importantly, the 
measurements may provide information from which to 
construct a model of global rainfall.  With advances in 
ground-based polarimetric and air- and satellite-based dual-
wavelength radars, which offer the potential of providing 
characteristics of the particle size distribution, continued 
investigation of space-time models of both rainfall and drop 
size distribution (DSD) is warranted.  Particular questions of 
interest are:  how can such models be constructed, what 
parameters are required for their specification, and how well 
do various measurements and instruments provide such 
information.  More generally, can such models, derived from 
radar data, provide a means by which to characterize rainfall 
and size distributions over a range of space-time scales.     
 
In this paper we focus on a log-normal model for the raindrop 
size distribution. By assuming that the rain rate and 
associated variables are log-normally distributed, it follows 
that the parameters of the DSD can be modeled as random 
variables from a multivariate Gaussian distribution.  We go 
on to discuss in a preliminary fashion how the rain rate and 
DSD parameters can be generated by simulating the 
underlying Gaussian process.   
 
 

II. LOG-NORMAL DROP SIZE DISTRIBUTION 
 
The log-normal approximation for the raindrop diameter 
distribution is [1]: 

 
N(D) = Nt exp[– (logD – η)2/2σ2] / [(2π)0.5 D]         (1) 
 
where Nt is the particle number concentration (m-3) and D is 
the diameter (mm). 
 
The natural logarithm of the pth moment, Mp, of N(D) is  
 
log(Mp) = log(Nt) + pη + (pσ)2/2,           (2) 
 
which can be expressed in summation or vector notation as 
 
log(Mp) = Σ ci Ui = c(p)⋅⋅⋅⋅U           (3) 
 
where 
 
U = [log(Nt), η, σ2],  c(p) = [1, p, p2/2]        (4) 
 
so that the mean of log(Mp) and the covariance of the 
logarithms of the pth and qth moments can be written, 
respectively, as 
 
〈log(Mp)〉 = Σ ci(p) 〈Ui〉= c(p)⋅⋅⋅⋅〈〈〈〈U〉〉〉〉         (5) 
 
A(p, q) ≡ cov(logMp, logMq) = ∑i,j ci(p) cj(q) cov(Ui, Uj)  (6) 
 
We note as an aside that (5) and (6) can be used to derive 
parameters in the power-law relations between radar and 
meteorological quantities in terms of the DSD parameters.  
They also can be used to address the TRMM-related problem 
of expressing ‘a’ in the R=a Zb relationship in terms of α and 
β in the k = α Zβ relationship. 
 
   

III.  GENERATION OF RAIN AND DSD FIELDS 
 
One of the motivations for considering the log-normal DSD 
is that the logarithm of any moment can be  expressed as a 
linear combination of the 3 parameters of the distribution, 
[log(Nt), η, σ2].  If the rain rate, R, is assumed to be log-
normal and if power-laws between R and Z (reflectivity 
factor), and R and k (specific attenuation) are valid, then (2) 
holds for at least 3 different moments of the DSD.  In general, 
we can invert the 3 equations and solve for the Ui (i=1,2,3) in 



terms of log R, log Z, and log k.  But since Ui can be written 
as a linear combination of Gaussian variables, the Ui 
themselves are Gaussian.  It is also worth noting that the 
mass-weighted diameter, Dm, and the median mass diameter, 
D0, can be expressed as M4/M3 = exp(η + 7σ2/2) and exp(η + 
3σ2), respectively, so that log Dm and log D0 are also 
Gaussian.  Although there is some controversy regarding the 
log-normality of R, Z, and k, over large space-time regions 
the assumption appears to be a reasonable and useful 
approximation for a number of studies.  That U is Gaussian 
permits us to construct realizations of the size distribution in 
space from which we can deduce all the usual bulk radar and 
meteorological parameters.  It also provides a means of 
computing radar and radiometric fields directly from such 
fields.     
 
A number of approaches to generate Gaussian random fields 
are described in the literature. The single-variate, 
multidimensional form of the equation considered here was 
given by Shinozuka and Jan [2] 
 
f(x,y) =∑i,j[S(k1i, k2j) ∆k1 ∆k2]0.5 cos(k′1i x + k′2j y + φi,j,)   (7)  
     
where S is the 2D Fourier transform of the autocovariance of 
f(x, y), φi,j are independent random phases uniformly 
distributed over [0, 2π] and the k1i are given by k1i = k1min + 
(i-0.5)∆k1, i=1,..,N with ∆k1 = (k1max - k1min)/N where the 2-
sided spectrum S is assumed to be negligible outside the 
region between k1min and k1max.  Finally, k′1i = k1i + δki, where 
δki is a uniformly distributed random variable with a 
maximum value much less than ∆k1.  Similar comments 
apply to the k2j variables.  The multivariate form of (7) can be 
written in a similar form [2]; however, in this case, the 
Fourier transforms of all autocovariances and cross 
covariances are required.  For the 3-parameter log-normal 
distribution, this requires three autocovariances, log(Nt), η, 
σ2, and three cross-covariances.  For example, the cross-
covariance of (log(Nt), η) = (U1, U2) can be written: 

E[(U1(x1, t1) – E(U1))(U2(x2, t2) – E(U2))] = CU1,U2 (ρ, τ)   (8)  

where E represents the expectation operator.  Because the 
fields are assumed to be isotropic and homogeneous in space 
and stationary in time, the cross-correlations and 
autocorrelations are functions only of the distance between 
points in space, ρ, and the absolute difference in time, τ = |t1 
– t2|.  For the remainder of the paper we will consider 
experimental data and some of the measurement and 
modeling efforts needed to specify the covariance functions.   

The left-hand images of Fig. 1 show the estimated rain rate 
within the swath of the TRMM radar for two satellite passes 
over a 100 × 100 latitude-longitude box that includes the 
Melbourne, FL WSR-88D ground-based radar.  On the right-
hand side are shown the autocorrelations of the rain rate field.   

Fig. 2 shows the spatial correlation versus distance from an 
average of the individual correlation overpass data acquired 
during Aug. 1998.  In this example, 15 overpasses were 
acquired with rain exceeding 10% of the total area and the 
number of PR (precipitation radar) scans within the box 
exceeding 100, comprising more than 400 km of along-track 
data.   

 

Fig. 1: Two TRMM PR overpasses of the Melbourne, FL site in Feb. 1998 
(left) and the corresponding spatial correlations. 

 

Fig. 2: Average spatial correlation of rain rate from individual overpasses of 
the Melbourne FL site for Aug. 1998.  Circles correspond to the experimental 
data; the solid line to a fit. 

In this case, the normalized spatial correlation can be 
modeled reasonably well by: 

C(ρ) = a2ν /(ρ3 + a2)ν 

where for the solid curve in Fig. 2, a = 2, ν = 0.3.  TRMM 
Precipitation Radar (PR) data from eight regions of the globe 



are presently being used to estimate the spatial correlation of 
the rain rate as functions of season and rain type.  However, 
the temporal sampling of the TRMM satellite is much too 
coarse to estimate the temporal correlation of the rain and 
ground-based data are needed.   

Following Bell [3] we can construct realizations of the rain 
field from the 2-dimensional Gaussian process generated by 
(7).  Two such simulations are shown in Fig. 3.  The 
simulated rain fields reproduce fairly well the fractional rain 
coverage, mean, standard deviation and spatial correlation of 
the inputs.  It should be noted, however, that these results are 
preliminary and that further testing and development of the 
model is required.   

 

Fig. 3: Two realizations of a rain field with spatial correlation based on that 
shown in Fig. 2.   

As noted earlier, generating realizations of the three DSD 
parameters requires data in space and time to model the six 
covariances.  Less complete but still quite useful would be a 
two parameter DSD consisting of a particle concentration and 
a characteristic size.  In this case, the number of covariances 
needed would be three.  Ground-based polarimetric radar data 
are well suited for this task but are limited in space by the 
relatively small number of well-calibrated radars of this type.  
Spaceborne dual-wavelength radar, as proposed in the Global 
Precipitation Mission (GPM), would provide extensive 
spatial coverage but with little or no information on the 
temporal evolution of the size distribution.  Airborne dual-
wavelength radar and ground-based disdrometer data, while 
limited in many respects, should prove useful in preliminary 
studies. Shown in Fig. 4 are DSD parameters derived from 
disdrometer data averaged along a 2.3 km path, measured at 
Wallops Island, VA. Corresponding temporal 
autocorrelations of the parameters are shown in the lower set 
of panels.  Size distribution data derived from airborne radars 

 

 

Fig. 4: Estimated log-normal parameters from disdrometer data over 2.3 km 
path (top set) along with temporal autocorrelations of the data (bottom). 

provide similar information for the spatial characterization.  

IV.  Summary and Conclusions 

Parameters in the log-normal DSD can be approximated as 
jointly Gaussian.  This fact can be used to simplify the 
generation of DSD fields and may prove useful in comparing 
retrievals from ground-based and spaceborne radar data.  The 
model may also find applications in generating realistic radar 
and radiometric fields for algorithm testing and development. 
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